
hubploy Documentation
Release 0.1

Yuvi Panda

May 05, 2021

Contents

1 Hubploy workflow 3
1.1 Components . 3
1.2 Deploying a change . 3

2 How-To Guides 5
2.1 How-To Guides Home . 5

3 Topic Guides 11
3.1 Topics Home . 11

4 Reference Documentation 17
4.1 Reference Docs Home . 17

5 Known Limitations 23

i

ii

hubploy Documentation, Release 0.1

hubploy is a suite of commandline tools and an opinionated repository structure for continuously deploying Jupyter-
Hubs on Kubernetes (with Zero to JupyterHub). Find the hubploy repository on GitHub.

Contents 1

https://z2jh.jupyter.org
https://github.com/yuvipanda/hubploy

hubploy Documentation, Release 0.1

2 Contents

CHAPTER 1

Hubploy workflow

Every change to your hub configuration must be made via a pull request to your git repository. Guided by
principles of continuous delivery, this informs hubploy’s design.

1.1 Components

The following components make up a hubploy based deployment workflow:

1. A deployment git repository, containing all the configuration for your JupyterHubs. This includes image con-
figuration, zero-to-jupyterhub configuration, and any secrets if necessary. hubploy is designed to support many
different hubs deploying to different cloud providers from the same repository.

2. A staging hub for each JupyterHub in the git repo. End users rarely use this hub, and it is primarily used for
testing by devs. The staging branch in the git repo contains the config for these hubs.

3. A prod(uction) hub for each JupyterHub in the git repo. End users actively use this hub, and we try to have
minimal downtime here. The prod branch in the git repo contains the config for these hubs. However, since
we want prod and staging to be as close as possible, the prod branch match the staging branch completely under
normal circumstances. The only commits that can be in prod but not in staging are merge commits.

1.2 Deploying a change

3

https://continuousdelivery.com/

hubploy Documentation, Release 0.1

4 Chapter 1. Hubploy workflow

CHAPTER 2

How-To Guides

These how-to guides are intended to walk you through the basics of particular tasks that you might do with Hubploy.

2.1 How-To Guides Home

2.1.1 How to Setup a Repository to Deploy a JupyterHub with Hubploy

This is a guide on how to deploy a JupyterHub with Hubploy.

General Procedure:

• Step 0: Setup Prerequisites

• Step 1: Get the hubploy-template Repository

• Step 2: Install Hubploy

• Step 3: Configure the Hub

• Step 4: Build and Push the Image

• Step 5: Deploy the Staging Hub

• Step 6: Deploy the Production Hub

• Step 7: Setup git-crypt for Secrets

• Step 8: GitHub Workflows

Step 0: Setup Prerequisites

Hubploy does not manage your cloud resources - only your Kubernetes resources. You should use some other means
to create your cloud resources. Example infrastructure deployments can be found at the terraform-deploy repository.
At a minimum, Hubloy expects a Kubernetes cluster. Many installations want to use a shared file system for home
directories, so in those cases you want to hvae that managed outside Hubploy as well.

5

https://github.com/pangeo-data/terraform-deploy

hubploy Documentation, Release 0.1

You also need the following tools installed:

1. Your cloud vendor’s commandline tool.

• Google Cloud SDK for Google Cloud

• AWS CLI for AWS

• Azure CLI for Azure

2. A local install of helm 3. Helm 2 is also supported, but requires the same version of Helm to be present locally
and on the cluster. If you are sing Helm 2, you can find both versions with helm version.

3. A docker environment that you can use. This is only needed when building images.

Step 1: Get the hubploy-template Repository

There are a couple different options for acquiring the content in this repository.

• Use the repository as a template. Click the “Use this template” button on the GitHub repository’s page, then
input your own repo name. You can then use git clone as normal to get your repository onto your local
machine.

• Fork the repository.

• Clone it directly with git clone https://github.com/yuvipanda/hubploy-template.git.
The disadvantage here is that you probably won’t have permissions to push changes and will have to only
develop locally. Not recommended.

Step 2: Install Hubploy

python3 -m venv .
source bin/activate
python3 -m pip install -r requirements.txt

This installs hubploy and its dependencies.

Step 3: Configure the Hub

Rename the Hub

Each directory inside deployments/ represents an installation of JupyterHub. The default is called myhub, but
please rename it to something more descriptive. git commit the result as well.

git mv deployments/myhub deployments/<your-hub-name>
git commit

Fill in the Minimum Config Details

You need to find all things marked TODO and fill them in. In particular,

1. hubploy.yaml needs information about where your docker registry & kubernetes cluster is, and paths to
access keys as well. These access key files should be in the deployment’s secret/ folder.

2. secrets/prod.yaml and secrets/staging.yaml require secure random keys you can generate and
fill in.

6 Chapter 2. How-To Guides

https://cloud.google.com/sdk/
https://aws.amazon.com/cli/
https://docs.microsoft.com/en-us/cli/azure/
https://helm.sh/docs/intro/install/
https://docs.docker.com/install/
https://github.com/yuvipanda/hubploy-template

hubploy Documentation, Release 0.1

If you are deploying onto AWS infrastructure, your access key file should look like the aws credentials file (usually
found at ~/.aws/credentials). However, the profile you use must be named default.

If you want to try deploying to staging now, that is fine! Hub Customization can come later as you try things out.

Hub Customizations

You can customize your hub in two major ways:

1. Customize the hub image. repo2docker is used to build the image, so you can put any of the supported configu-
ration files under deployments/<hub-image>/image. You must make a git commit after modifying this
for hubploy build <hub-name> --push --check-registry to work, since it uses the commit
hash as the image tag.

2. Customize hub configuration with various YAML files.

• hub/values.yaml is common to all hubs that exist in this repo (multiple hubs can live under
deployments/).

• deployments/<hub-name>/config/common.yaml is where most of the config specific to each
hub should go. Examples include memory / cpu limits, home directory definitions, etc

• deployments/<hub-name>/config/staging.yaml and deployments/<hub-name>/
config/prod.yaml are files specific to the staging & prod versions of the hub. These should be as
minimal as possible. Ideally, only DNS entries, IP addresses, should be here.

• deployments/<hub-name>/secrets/staging.yaml and deployments/<hub-name>/
secrets/prod.yaml should contain information that mustn’t be public. This would be proxy / hub
secret tokens, any authentication tokens you have, etc. These files must be protected by something like
git-crypt or sops.

You can customize the staging hub, deploy it with hubploy deploy <hub-name> hub staging, and iterate
until you like how it behaves.

Step 4: Build and Push the Image

1. Make sure tha appropriate docker credential helper is installed, so hubploy can push to the registry you need.

For AWS, you need docker-ecr-credential-helper For Google Cloud, you need the gcloud commandline tool

2. Make sure you are in your repo’s root directory, so hubploy can find the directory structure it expects.

3. Build and push the image to the registry

hubploy build <hub-name> --push --check-registry

This should check if the user image for your hub needs to be rebuilt, and if so, it’ll build and push it.

Step 5: Deploy the Staging Hub

Each hub will always have two versions - a staging hub that isn’t used by actual users, and a * production* hub that is.
These two should be kept as similar as possible, so you can fearlessly test stuff on the staging hub without feaer that it
is going to crash & burn when deployed to production.

To deploy to the staging hub,

hubploy deploy <hub-name> hub staging

2.1. How-To Guides Home 7

https://repo2docker.readthedocs.io/
https://repo2docker.readthedocs.io/en/latest/config_files.html
https://repo2docker.readthedocs.io/en/latest/config_files.html
https://github.com/AGWA/git-crypt
https://github.com/mozilla/sops
https://github.com/awslabs/amazon-ecr-credential-helper
https://cloud.google.com/sdk/

hubploy Documentation, Release 0.1

This should take a while, but eventually return successfully. You can then find the public IP of your hub with:

kubectl -n <hub-name>-staging get svc public-proxy

If you access that, you should be able to get in with any username & password.

The defaults provision each user their own EBS / Persistent Disk, so this can get expensive quickly :) Watch out!

If you didn’t do more Hub Customizations, you can do so now!

Step 6: Deploy the Production Hub

You can then do a production deployment with: hubploy deploy <hub-name> hub prod, and test it out!

Step 7: Setup git-crypt for Secrets

git crypt is used to keep encrypted secrets in the git repository. We would eventually like to use something like sops
but for now. . .

1. Install git-crypt. You can get it from brew or your package manager.

2. In your repo, initialize it.

git crypt init

3. In .gitattributes have the following contents:

deployments/*/secrets/** filter=git-crypt diff=git-crypt
deployments/**/secrets/** filter=git-crypt diff=git-crypt
support/secrets.yaml filter=git-crypt diff=git-crypt

4. Make a copy of your encryption key. This will be used to decrypt the secrets. You will need to share it with
your CD provider, and anyone else.

git crypt export-key key

This puts the key in a file called ‘key’

Step 8: GitHub Workflows

1. Get a base64 copy of your key

cat key | base64

2. Put it as a secret named GIT_CRYPT_KEY in github secrets.

3. Make sure you change the myhub to your deployment name in the workflows under .github/workflows.

4. Push to the staging branch, and check out GitHub actions, to see if your action goes to completion.

5. If the staging action succeeds, make a PR from staging to prod, and merge this PR. This should also trigger an
action - see if this works out.

Note: Always make a PR from staging to prod, never push directly to prod. We want to keep the staging and prod
branches as close to each other as possible, and this is the only long term guaranteed way to do that.

8 Chapter 2. How-To Guides

https://github.com/AGWA/git-crypt
https://github.com/mozilla/sops

hubploy Documentation, Release 0.1

2.1.2 How to Setup a Hubploy Development Environment

This is a guide on how to setup a development environment for Hubploy. Use cases would be for making a custom
Hubploy image for your own use or contributing to the Hubploy repository.

• Prerequisites

• Modifying Hubploy Files

• Using a Custom Hubploy Locally

• Building a Custom Hubploy on DockerHub

• Contributing to Hubploy

Prerequisites

To start, fork the main Hubploy repository and then clone your fork. This will enable easier setup for pull requests and
independent development. Methodology for testing Hubploy is limited right now but it is recommendation that you
have a working JupyterHub configuration so you can try to build and deploy.

If you don’t have such a configuration set up, we recommend setting one up using the hubploy template repository and
following the How-To guide Deploying a JupyterHub with Hubploy.

Modifying Hubploy Files

The code for Hubploy is contained in the hubploy/hubploy folder. All of it is in Python, so there is no compiling
necessary to use it locally. As long as the files are saved, their changes should be reflected the next time you run a
hubploy command.

Using a Custom Hubploy Locally

Hubploy can be installed via pip install hubploy, but this version is very out-of-date. Using a custom version
of Hubploy will require different installation methods.

If you are just using your custom Hubploy locally, you can link it with pip. Go to the top folder of your
hubploy-template or JupyterHub deployment repo and run:

pip install -e ~/<absolute-path-to>/hubploy

You can then make changes to your local Hubploy files and rerun Hubploy commands in the other folder for quick
development.

hubploy can also be installed at any specific commit with the following line in a requirements.txt file:

git+https://github.com/yuvipanda/hubploy@<commit-hash>

Building a Custom Hubploy on DockerHub

Another way to use Hubploy is by building a Docker image and pushing it to DockerHub. For this, you will need
to have forked the Hubploy repository to your personal GitHub account. You will also need a personal DockerHub
account.

2.1. How-To Guides Home 9

https://github.com/yuvipanda/hubploy
https://github.com/yuvipanda/hubploy-template
https://hubploy.readthedocs.io/en/latest/howto/hubploy-deploy-jupyterhub-repo-setup.html

hubploy Documentation, Release 0.1

Modify the file hubploy/.github/workflows/docker-push.yaml. Change name: yuvipanda/hubploy
to name: <your-dockerhub-name>/hubploy. You will need to input your DockerHub credentials as
secrets in your personal Hubploy GitHub repository as DOCKER_USERNAME and DOCKER_PASSWORD. Also
in the GitHub repository, go to the Actions tab and allow the repo to run workflows by clicking “I understand
my workflows, go ahead and run them.”

Once you have made the changes you want for your custom Hubploy, you can git push your local changes. The
file mentioned above will automatically attempt to push your Hubploy to DockerHub! If it fails, there will be output
in the Actions tab that should have some insights.

Now that you have a publicly-hosted image for your custom Hubploy, you can reference it anywhere you want! In
hubploy-template, these references are in the hubploy/.github/workflows/ files

jobs:
build:
name:
This job runs on Linux
runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v1
- uses: docker://yuvipanda/hubploy:20191210215236cfab2d

You will need to change the docker link everywhere you see it in these files to the link of your image on DockerHub.

Contributing to Hubploy

If you have your own fork of Hubploy, and have a feature that would be generally useful, feel free to join the dicussions
in the Issues section or contribute a PR!

For more details, see the full contribution guide.

2.1.3 How to Build a JupyterHub Image

10 Chapter 2. How-To Guides

https://hubploy.readthedocs.io/en/latest/reference/contribution-guide.html

CHAPTER 3

Topic Guides

These topic guides are meant as informative reference documents about various pieces of Hubploy.

3.1 Topics Home

3.1.1 Hubploy’s Expected Directory Structure

Hubploy expects the directory structure shown in the hubploy template repository. The folders must be set up in this
fashion:

hubploy-template/
.github

workflows
deploy.yaml
image-build.yaml

deployments
hub

config
common.yaml
prod.yaml
staging.yaml

hubploy.yaml
image

ipython_config.py
postBuild
requirements.txt

secrets
aws-ecr-config.cfg
aws-eks-config.cfg
prod.yaml
staging.yaml

hub

(continues on next page)

11

https://github.com/yuvipanda/hubploy-template

hubploy Documentation, Release 0.1

(continued from previous page)

Chart.yaml
requirements.lock
requirements.yaml
templates

jupyter-notebook-config.yaml
nfs-pvc.yaml

values.yaml
LICENSE
README.rst
requirements.txt

.github Folder

This folder houses the GitHub Workflow files that you can use for Continuous Integration with Hubploy. deploy.
yaml will attempt to build the staging or production JupyterHub upon updates to the respective GitHub branch.
image-build.yaml will attempt to build the JupyterHub image upon updates to only the production branch.

These files have references to a Docker image that uses Hubploy. You can change this image. Some options are listed
in How to Setup a Hubploy Development Environment.

Deployments Folder

The deployments folder can hold multiple subfolders, but each must have the same structure as the hub folder. Renam-
ing the hub folder is part of the recommended workflow for deploying a JupyterHub. Each subfolder directly under
deployments needs a different name so that Hubploy can distinguish between them in Hubploy commands.

Each JupyterHub is deployed with YAML files. The YAML files listed under deployments must have these names.

Hubploy takes in secrets for credentialing via the .cfg files. You can rename these freely, just be sure to put the
proper names into hubploy.yaml.

The image folder can have additional files depending on how you are building the image. See more in the image
building how-to. If you are not specifying images in your hubploy.yaml file, the images/ folder can be
deleted.

Hub Folder

The hub folder houses a local Helm Chart. This chart and folder can be renamed, but the name needs to be present in
Hubploy commands, the files in the .github folder, and in Chart.yaml . Modification of the files in here should
be done as you would change a Helm Chart.

3.1.2 YAML File Value Overriding in Hubploy

There are several .yaml files present in the hubploy-template repository. It can be unclear which settings go in which
files. This topic hopes to clear that up a bit. As a reminder, here is the directory structure that Hubploy expects
(minimized for focus on the yaml files):

hubploy-template/
.github

workflows
deploy.yaml
image-build.yaml

(continues on next page)

12 Chapter 3. Topic Guides

https://helm.sh/docs/intro/using_helm/

hubploy Documentation, Release 0.1

(continued from previous page)

deployments
hub

config
common.yaml
prod.yaml
staging.yaml

hubploy.yaml
secrets

aws-ecr-config.cfg
aws-eks-config.cfg
prod.yaml
staging.yaml

hub
Chart.yaml
requirements.lock
requirements.yaml
templates

jupyter-notebook-config.yaml
nfs-pvc.yaml

values.yaml

GitHub Action Files

The two files under .github/workflows/ manage individual GitHub Actions for Hubploy. They are independent
of most of the rest of Hubploy.

JupyterHub Deployment Files

The main value files are related to the JupyterHub Helm release. The lowest level of these are specified in hub/
values.yaml via:

jupyterhub: {}

The braces can be removed once there are yaml values in the file, but they are needed if this block is empty. Appropriate
values to put in this file are those that will span both versions of all JupyterHubs that you will deploy with Hubploy,
as this file will be used for all of them.

The next file in the heirarchy is deployments/hub/config/common.yaml. This file covers deployment values
that are common to both the staging and production hubs that Hubploy named “hub,” or what you had changed that
folder name to. If there are multiple JupyterHubs being managed , each one will have a common.yaml. Values in
this file will overwrite hub/values.yaml.

The next two files in the heirarchy are also in the config folder: staging.yaml and prod.yaml. These contain
values for the staging and production hubs, respectively. Values in these files will override the previous two. These
two files do not override each other ever since they are for two different hubs.

The last files in the heirarchy are under the secrets directory. These are set in a folder that we tell git-crypt to
encrypt when pushing code to GitHub. In general, there shouldn’t be anything in these files that overwrites the other
staging.yaml and prod.yaml. It is more expected that values in these files will overwrite default credentials or
paths present in the first two files.

A quick summary of the heirarchy follows in descending priority (lower overwrites higher) but ascending generality
(higher applies to more hubs):

3.1. Topics Home 13

hubploy Documentation, Release 0.1

hub/values.yaml
deployments/hub/config/common.yaml

deployments/hub/config/staging.yaml
deployments/hub/config/prod.yaml
deployments/hub/secrets/staging.yaml
deployments/hub/secrets/prod.yaml

Local Hub Helm Chart Files

Everything under the hub folder is related to the Helm Chart. In Chart.yaml, the main specification is what the
Chart is named and what version you are on. In requirements.yaml, the JupyterHub Helm chart is listed as
the only dependency and you can pick a specific version. values.yaml is used to provide the lowest level of
values for JupyterHub configuration and other deployment pieces that are present in the templates/ folder or other
dependencies you choose to add to the Helm chart.

3.1.3 Helm Versions in Hubploy

• Helm Versions Present by Default

• Using a Custom Version of Helm

• Local Usage

• GitHub Action Usage

Helm Versions Present by Default

The hubploy Docker image has Helm v2.16.9 and v3.2.4 installed by default. This may depend on the specific
version of hubploy that is installed. Versions can be found in the Dockerfile present in the base folder of the hubploy
repository. There isn’t a version matrix to help find which versions of helm ship with certain versions of hubploy.
You can look at the Dockerfile’s commit history or just use the most recent version of hubploy, which has the
versions listed above.

Using a Custom Version of Helm

To use your own installed version of helm, set the environment variable HELM_EXECUTABLE. hubploy will pick
up the value from this environment variable to use when running helm commands. It will default to helm, ie. v2.16.9,
if nothing else is installed. You can find the line of code that does this here.

Local Usage

You can use several versions of helm in local usage of hubploy This does require that you have installed helm or
are using the hubploy Docker image on your local machine.

To use this environment variable on a local installation of hubploy, use the following command from your terminal:

export HELM_EXECUTABLE=~/absolute/path/to/helm/binary

For example, if you wanted to use helm v3 locally and had installed and moved it to /usr/local/bin/helm3,
you would run the following from your terminal:

14 Chapter 3. Topic Guides

https://helm.sh/
https://github.com/yuvipanda/hubploy/blob/master/Dockerfile
https://github.com/yuvipanda/hubploy
https://github.com/yuvipanda/hubploy/blob/master/hubploy/helm.py#L34

hubploy Documentation, Release 0.1

export HELM_EXECUTABLE=/usr/local/bin/helm3

If you already have helm v2 installed, no extra steps are necessary.

GitHub Action Usage

To use this environment variable in a GitHub Action, use the following lines in your workflow file:

env:
HELM_EXECUTABLE: /absolute/path/to/helm/binary

More information on this second option can be found on the Environment variables page on GitHub Docs.

3.1. Topics Home 15

https://docs.github.com/en/free-pro-team@latest/actions/reference/environment-variables

hubploy Documentation, Release 0.1

16 Chapter 3. Topic Guides

CHAPTER 4

Reference Documentation

These reference documents are here to describe the configuration values of various files in Hubploy .

4.1 Reference Docs Home

4.1.1 Hubploy Configuration Values Reference

This reference doc will detail the various configuration values present in hubploy.yaml. Here is the hubploy.
yaml file that comes with cloning hubploy-template:

images:
image_name: # TODO: Full path to your docker image, based on the following pattern
On AWS: <account-id>.dkr.ecr.<zone>.amazonaws.com/<your-hub-name>-user-image
On Google Cloud: gcr.io/<project-name>/<your-hub-name>-user-image
registry:
provider: # TODO: Pick 'gcloud' or 'aws', and fill up other config accordingly
gcloud:

Pushes to Google Container Registry.
project: # TODO: GCloud Project Name
Make a service account with GCR push permissions, put it in secrets/gcr-key.

→˓json
service_key: gcr-key.json

aws:
Pushes to Amazon ECR
account_id: # TODO: AWS account id
region: # TODO: Zone in which your container image should live. Match your

→˓cluster's zone
TODO: Get AWS credentials that can push to ECR, in same format as ~/.aws/

→˓credentials
then put them in secrets/aws-ecr-config.cfg
service_key: aws-ecr-config.cfg

(continues on next page)

17

hubploy Documentation, Release 0.1

(continued from previous page)

cluster:
provider: # TODO: gcloud or aws
gcloud:
project: # TODO: Name of your Google Cloud project with the cluster in it
cluster: # TODO: Name of your Kubernetes cluster
zone: # TODO: Zone or region your cluster is in
Make a service key with permissions to talk to your cluster, put it in secrets/

→˓gkee-key.json
service_key: gke-key.json

aws:
account_id: # TODO: AWS account id
region: # TODO: Zone or region in which your cluster is set up
cluster: # TODO: The name of your EKS cluster
TODO: Get AWS credentials that can access your EKS cluster, in same format as ~/

→˓.aws credentials
then put them in secrets/aws-eks-config.cfg
service_key: aws-eks-config.cfg

The various values are described below.

images

The entire images block is optional. If you don’t need it, comment it out or delete it.

image_name

Full path to your docker image, based on the following pattern:

• On AWS: <account-id>.dkr.ecr.<zone>.amazonaws.com/<your-hub-name>-user-image

• On Google Cloud: gcr.io/<project-name>/<your-hub-name>-user-image

registry

provider

Either ‘aws’ or ‘gcloud’. More options will be present in the future. Both the aws and gcloud blocks are uncom-
mented. The one that you do not pick should be commented out.

gcloud

project

GCloud Project Name

service_key

gcr-key.json by default.

Make a service account with GCR push permissions and put it in secrets/gcr-key.json. You can rename this
file, but you will also need put the new filename here.

18 Chapter 4. Reference Documentation

hubploy Documentation, Release 0.1

aws

account_id

AWS account ID

region

The zone in which your ECR image will live. This should match the zone where your cluster will live.

service_key

aws-ecr-config.cfg by default.

Get AWS Credentials that can push images to ECR. These credentials should be in the same format as found in ~/.
aws/credentials and put in to the file secrets/aws-ecr-config.cfg. You can rename this file, but you
will also need put the new filename here.

cluster

provider

Either ‘aws’ or ‘gcloud’. More options will be present in the future. Both the aws and gcloud blocks are uncom-
mented. The one that you do not pick should be commented out.

gcloud

project

Name of your Google Cloud project with the cluster you will create.

cluster

Name of the Kubernetes cluster you will create.

zone

Zone or region this cluster will sit in.

service_key

gke-key.json by default.

Make a service key with permissions to talk to your cluster and put it in secrets/gke-key.json. You can
rename this file, but you will also need put the new filename here.

4.1. Reference Docs Home 19

hubploy Documentation, Release 0.1

aws

account_id

AWS account ID

cluster

The name of the EKS cluster you will create.

region

Zone or region this cluster will sit in.

service_key

aws-eks-config.cfg by default.

Get AWS credentials that can access your EKS cluster. These credentials should be in the same format as found in
~/.aws/credentials and put in to the file secrets/aws-eks-config.cfg. You can rename this file, but
you will also need put the new filename here.

4.1.2 Contribution Guide

• Setting up for Documentation Development

• Setting up for Hubploy Development

hubploy is open-source and anyone can contribute to it. We welcome the help! Yuvi Panda is the original author
and can give GitHub contributor access to those who are committed to making hubploy better. You do not have to
be a contributor on GitHub to suggest changes in the Issues section or make pull requests. A contributor will have to
accept your changes before they become a part of hubploy.

If you don’t have git already, install it and clone this repository.

git clone https://github.com/yuvipanda/hubploy

Using a forking workflow is also useful and will make seting up pull requests easier.

Once you have made changes that you are ready to offer to hubploy, make a pull request to the main hubploy
repository. Someone will get back to you soon on your changes.

If you want to dicuss changes before they get onto GitHub or contact a contributor, try the JupyterHub Gitter channel.

Setting up for Documentation Development

The hubploy documentation is automatically built on each commit as configured on ReadTheDocs. Source files are
in the docs/ folder of the main repository.

To set up your local machine for documentation development, install the required packages with:

From the docs/ folder
pip install -r doc-requirements.txt

20 Chapter 4. Reference Documentation

https://github.com/yuvipanda/hubploy/issues
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://github.com/yuvipanda/hubploy
https://github.com/yuvipanda/hubploy
https://gitter.im/jupyterhub/jupyterhub
https://readthedocs.org/projects/hubploy/

hubploy Documentation, Release 0.1

To test your updated documentation, run:

From the docs/ folder
make html

Make sure there are no warnings or errors. From there, you can check the _build/html/ folder and launch the
.html files locally to check that formatting is as you expect.

Setting up for Hubploy Development

See the How-To guide on setting up a development environment for hubploy.

In short, you can install hubploy and its dependencies easily with the above guide but you will need a kubernetes
cluster to do local deployment tests. Some good resources for deploying a kubernetes cluster are:

1. Zero to JupyterHub K8s

2. AWS Terraform K8s Examples

You will also need to reference the section Using a Custom Hubploy Locally, rather than doing a default hubploy
installation.

4.1. Reference Docs Home 21

https://hubploy.readthedocs.io/en/latest/howto/hubploy-setup-dev-environment.html
https://kubernetes.io/
https://zero-to-jupyterhub.readthedocs.io/en/latest/
https://github.com/pangeo-data/terraform-deploy/tree/master/aws-examples
https://hubploy.readthedocs.io/en/latest/howto/hubploy-setup-dev-environment.html#using-a-custom-hubploy-locally

hubploy Documentation, Release 0.1

22 Chapter 4. Reference Documentation

CHAPTER 5

Known Limitations

1. hubploy requires you already have infrastructure set up - Kubernetes cluster, persistent home directories, image
repositories, etc. There are ongoing efforts to fix this, however.

2. More documentation and tests, as always!

23

https://github.com/pangeo-data/terraform-deploy

	Hubploy workflow
	Components
	Deploying a change

	How-To Guides
	How-To Guides Home

	Topic Guides
	Topics Home

	Reference Documentation
	Reference Docs Home

	Known Limitations

