

HubPloy

hubploy is a suite of commandline tools and an opinionated
repository structure for continuously deploying JupyterHubs on Kubernetes (with
Zero to JupyterHub [https://z2jh.jupyter.org]). Find the hubploy
repository [https://github.com/yuvipanda/hubploy] on GitHub.

Hubploy workflow

Every change to your hub configuration must be made via a pull request
to your git repository. Guided by principles of continuous delivery [https://continuousdelivery.com/],
this informs hubploy’s design.

Components

The following components make up a hubploy based deployment workflow:

	A deployment git repository, containing all the configuration for your
JupyterHubs. This includes image configuration, zero-to-jupyterhub configuration,
and any secrets if necessary. hubploy is designed to support many different
hubs deploying to different cloud providers from the same repository.

	A staging hub for each JupyterHub in the git repo. End users rarely use
this hub, and it is primarily used for testing by devs. The staging branch
in the git repo contains the config for these hubs.

	A prod(uction) hub for each JupyterHub in the git repo. End users actively
use this hub, and we try to have minimal downtime here. The prod branch
in the git repo contains the config for these hubs. However, since we want
prod and staging to be as close as possible, the prod branch match the
staging branch completely under normal circumstances. The only commits that
can be in prod but not in staging are merge commits.

Deploying a change

 graph TD
Change-Configuration[Change configuration] --> Create-Staging-PR[Create PR to 'staging' branch]
 subgraph iterate on config change
 Create-Staging-PR --> Automated-Tests[CI runs automated tests]
 Automated-Tests --> Code-Review[Code Review]
 Code-Review --> Automated-Tests
 end
 Code-Review --> Merge-Staging-PR[Merge PR to 'staging' branch]
 subgraph test in staging
 Merge-Staging-PR --> Deploy-To-Staging[CI deploys staging hub]
 Deploy-To-Staging --> Test-Staging[Manually test staging hub]
 Test-Staging --> |Success| Create-Prod-PR[Create PR from 'staging' to 'prod']
 Test-Staging --> |Fail| Try-Again[Debug & Try Again]
 end
 Create-Prod-PR --> Merge-Prod-PR[Merge PR to prod branch]
 subgraph promote to prod
 Merge-Prod-PR --> Deploy-To-Prod[CI deploys prod hub]
 Deploy-To-Prod --> Happy-Users[Users are happy!]
 end

How-To Guides

These how-to guides are intended to walk you through the basics of particular tasks that you might do with Hubploy.

	How-To Guides Home
	How to Setup a Repository to Deploy a JupyterHub with Hubploy

	How to Setup a Hubploy Development Environment

	How to Build a JupyterHub Image

Topic Guides

These topic guides are meant as informative reference documents about various pieces of Hubploy.

	Topics Home
	Hubploy’s Expected Directory Structure

	YAML File Value Overriding in Hubploy

	Helm Versions in Hubploy

Reference Documentation

These reference documents are here to describe the configuration values of various files in Hubploy
.

	Reference Docs Home
	Hubploy Configuration Values Reference

	Contribution Guide

Known Limitations

	hubploy requires you already have infrastructure set up - Kubernetes
cluster, persistent home directories, image repositories, etc. There
are ongoing efforts [https://github.com/pangeo-data/terraform-deploy] to fix
this, however.

	More documentation and tests, as always!

How-To Guides Home

	How to Setup a Repository to Deploy a JupyterHub with Hubploy
	Step 0: Setup Prerequisites

	Step 1: Get the hubploy-template Repository

	Step 2: Install Hubploy

	Step 3: Configure the Hub
	Rename the Hub

	Fill in the Minimum Config Details

	Hub Customizations

	Step 4: Build and Push the Image

	Step 5: Deploy the Staging Hub

	Step 6: Deploy the Production Hub

	Step 7: Setup git-crypt for Secrets

	Step 8: GitHub Workflows

	How to Setup a Hubploy Development Environment
	Prerequisites

	Modifying Hubploy Files

	Using a Custom Hubploy Locally

	Building a Custom Hubploy on DockerHub

	Contributing to Hubploy

	How to Build a JupyterHub Image

How to Setup a Repository to Deploy a JupyterHub with Hubploy

This is a guide on how to deploy a JupyterHub with Hubploy.

General Procedure:

	Step 0: Setup Prerequisites

	Step 1: Get the hubploy-template Repository

	Step 2: Install Hubploy

	Step 3: Configure the Hub

	Step 4: Build and Push the Image

	Step 5: Deploy the Staging Hub

	Step 6: Deploy the Production Hub

	Step 7: Setup git-crypt for Secrets

	Step 8: GitHub Workflows

Step 0: Setup Prerequisites

Hubploy does not manage your cloud resources - only your Kubernetes resources. You should use
some other means to create your cloud resources. Example infrastructure deployments can be found
at the terraform-deploy repository [https://github.com/pangeo-data/terraform-deploy]. At a
minimum, Hubloy expects a Kubernetes cluster. Many installations want to use a shared file system
for home directories, so in those cases you want to hvae that managed outside Hubploy as well.

You also need the following tools installed:

	Your cloud vendor’s commandline tool.

	Google Cloud SDK [https://cloud.google.com/sdk/] for Google Cloud

	AWS CLI [https://aws.amazon.com/cli/] for AWS

	Azure CLI [https://docs.microsoft.com/en-us/cli/azure/] for Azure

	A local install of helm 3 [https://helm.sh/docs/intro/install/]. Helm 2 is also supported,
but requires the same version of Helm to be present locally and on the cluster. If you are sing
Helm 2, you can find both versions with helm version.

	A docker environment [https://docs.docker.com/install/] that you can use. This is only
needed when building images.

Step 1: Get the hubploy-template Repository

There are a couple different options for acquiring the content in this repository [https://github.com/yuvipanda/hubploy-template].

	Use the repository as a template. Click the “Use this template” button on the GitHub
repository’s page, then input your own repo name. You can then use git clone as normal to
get your repository onto your local machine.

	Fork the repository.

	Clone it directly with git clone https://github.com/yuvipanda/hubploy-template.git. The
disadvantage here is that you probably won’t have permissions to push changes and will have to
only develop locally. Not recommended.

Step 2: Install Hubploy

python3 -m venv .
source bin/activate
python3 -m pip install -r requirements.txt

This installs hubploy and its dependencies.

Step 3: Configure the Hub

Rename the Hub

Each directory inside deployments/ represents an installation of JupyterHub. The default is
called myhub, but please rename it to something more descriptive. git commit the result
as well.

git mv deployments/myhub deployments/<your-hub-name>
git commit

Fill in the Minimum Config Details

You need to find all things marked TODO and fill them in. In particular,

	hubploy.yaml needs information about where your docker registry & kubernetes cluster is,
and paths to access keys as well. These access key files should be in the deployment’s
secret/ folder.

	secrets/prod.yaml and secrets/staging.yaml require secure random keys you can generate
and fill in.

If you are deploying onto AWS infrastructure, your access key file should look like the aws
credentials file (usually found at ~/.aws/credentials). However, the profile you use must
be named default.

If you want to try deploying to staging now, that is fine! Hub Customization can come later as you
try things out.

Hub Customizations

You can customize your hub in two major ways:

	Customize the hub image. repo2docker [https://repo2docker.readthedocs.io/] is used to build the image, so you can put any of the
supported configuration files [https://repo2docker.readthedocs.io/en/latest/config_files.html] under deployments/<hub-image>/image. You must make a git
commit after modifying this for hubploy build <hub-name> --push --check-registry to work,
since it uses the commit hash as the image tag.

	Customize hub configuration with various YAML files.

	hub/values.yaml is common to all hubs that exist in this repo (multiple hubs can live
under deployments/).

	deployments/<hub-name>/config/common.yaml is where most of the config specific to each
hub should go. Examples include memory / cpu limits, home directory definitions, etc

	deployments/<hub-name>/config/staging.yaml and
deployments/<hub-name>/config/prod.yaml
are files specific to the staging & prod versions of the hub. These should be as minimal as
possible. Ideally, only DNS entries, IP addresses, should be here.

	deployments/<hub-name>/secrets/staging.yaml and
deployments/<hub-name>/secrets/prod.yaml
should contain information that mustn’t be public. This would be proxy / hub secret
tokens, any authentication tokens you have, etc. These files must be protected by something
like git-crypt [https://github.com/AGWA/git-crypt] or
sops [https://github.com/mozilla/sops].

You can customize the staging hub, deploy it with hubploy deploy <hub-name> hub staging, and
iterate until you like how it behaves.

Step 4: Build and Push the Image

	Make sure tha appropriate docker credential helper is installed, so hubploy can push to the
registry you need.

For AWS, you need docker-ecr-credential-helper [https://github.com/awslabs/amazon-ecr-credential-helper]
For Google Cloud, you need the gcloud commandline tool [https://cloud.google.com/sdk/]

	Make sure you are in your repo’s root directory, so hubploy can find the directory structure it
expects.

	Build and push the image to the registry

hubploy build <hub-name> --push --check-registry

This should check if the user image for your hub needs to be rebuilt, and if so, it’ll build
and push it.

Step 5: Deploy the Staging Hub

Each hub will always have two versions - a staging hub that isn’t used by actual users, and a *
production* hub that is. These two should be kept as similar as possible, so you can fearlessly
test stuff on the staging hub without feaer that it is going to crash & burn when deployed to
production.

To deploy to the staging hub,

hubploy deploy <hub-name> hub staging

This should take a while, but eventually return successfully. You can then find the public IP of
your hub with:

kubectl -n <hub-name>-staging get svc public-proxy

If you access that, you should be able to get in with any username & password.

The defaults provision each user their own EBS / Persistent Disk, so this can get expensive
quickly :) Watch out!

If you didn’t do more Hub Customizations, you can do so now!

Step 6: Deploy the Production Hub

You can then do a production deployment with: hubploy deploy <hub-name> hub prod, and test it
out!

Step 7: Setup git-crypt for Secrets

git crypt [https://github.com/AGWA/git-crypt] is used to keep encrypted secrets in the git
repository. We would eventually like to use something like
sops [https://github.com/mozilla/sops]
but for now…

	Install git-crypt. You can get it from brew or your package manager.

	In your repo, initialize it.

git crypt init

	In .gitattributes have the following contents:

deployments/*/secrets/** filter=git-crypt diff=git-crypt
deployments/**/secrets/** filter=git-crypt diff=git-crypt
support/secrets.yaml filter=git-crypt diff=git-crypt

	Make a copy of your encryption key. This will be used to decrypt the secrets. You will need to
share it with your CD provider, and anyone else.

git crypt export-key key

This puts the key in a file called ‘key’

Step 8: GitHub Workflows

	Get a base64 copy of your key

cat key | base64

	Put it as a secret named GIT_CRYPT_KEY in github secrets.

	Make sure you change the myhub to your deployment name in the
workflows under .github/workflows.

	Push to the staging branch, and check out GitHub actions, to
see if your action goes to completion.

	If the staging action succeeds, make a PR from staging to prod,
and merge this PR. This should also trigger an action - see if
this works out.

Note: Always make a PR from staging to prod, never push directly to prod. We want to keep
the staging and prod branches as close to each other as possible, and this is the only long term
guaranteed way to do that.

How to Setup a Hubploy Development Environment

This is a guide on how to setup a development environment for Hubploy. Use cases would be for
making a custom Hubploy image for your own use or contributing to the Hubploy repository.

	Prerequisites

	Modifying Hubploy Files

	Using a Custom Hubploy Locally

	Building a Custom Hubploy on DockerHub

	Contributing to Hubploy

Prerequisites

To start, fork the main Hubploy repository [https://github.com/yuvipanda/hubploy]
and then clone your fork. This will enable easier setup for pull requests and
independent development. Methodology for testing Hubploy is limited right now but it is
recommendation that you have a working JupyterHub configuration so you can try to
build and deploy.

If you don’t have such a configuration set up, we recommend setting one up using the
hubploy template repository [https://github.com/yuvipanda/hubploy-template] and following the
How-To guide
Deploying a JupyterHub with Hubploy [https://hubploy.readthedocs.io/en/latest/howto/hubploy-deploy-jupyterhub-repo-setup.html].

Modifying Hubploy Files

The code for Hubploy is contained in the hubploy/hubploy folder. All of it is in Python, so
there is no compiling necessary to use it locally. As long as the files are saved, their changes
should be reflected the next time you run a hubploy command.

Using a Custom Hubploy Locally

Hubploy can be installed via pip install hubploy, but this version is very out-of-date.
Using a custom version of Hubploy will require different installation methods.

If you are just using your custom Hubploy locally, you can link it with pip. Go to the top
folder of your hubploy-template or JupyterHub deployment repo and run:

pip install -e ~/<absolute-path-to>/hubploy

You can then make changes to your local Hubploy files and rerun Hubploy commands in the other
folder for quick development.

hubploy can also be installed at any specific commit with the following line in a
requirements.txt file:

git+https://github.com/yuvipanda/hubploy@<commit-hash>

Building a Custom Hubploy on DockerHub

Another way to use Hubploy is by building a Docker image and pushing it to DockerHub. For this,
you will need to have forked the Hubploy repository to your personal GitHub account. You will also
need a personal DockerHub account.

	Modify the file hubploy/.github/workflows/docker-push.yaml. Change name: yuvipanda/hubploy

	to name: <your-dockerhub-name>/hubploy. You will need to input your DockerHub credentials as
secrets in your personal Hubploy GitHub repository as DOCKER_USERNAME and DOCKER_PASSWORD.
Also in the GitHub repository, go to the Actions tab and allow the repo to run workflows by
clicking “I understand my workflows, go ahead and run them.”

Once you have made the changes you want for your custom Hubploy, you can git push your local
changes. The file mentioned above will automatically attempt to push your Hubploy to DockerHub! If
it fails, there will be output in the Actions tab that should have some insights.

Now that you have a publicly-hosted image for your custom Hubploy, you can reference it anywhere
you want! In hubploy-template, these references are in the hubploy/.github/workflows/ files

jobs:
 build:
 name:
 # This job runs on Linux
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v1
 - uses: docker://yuvipanda/hubploy:20191210215236cfab2d

You will need to change the docker link everywhere you see it in these files to the link of your
image on DockerHub.

Contributing to Hubploy

If you have your own fork of Hubploy, and have a feature that would be generally useful, feel free
to join the dicussions in the Issues section or contribute a PR!

For more details, see the full
contribution guide [https://hubploy.readthedocs.io/en/latest/reference/contribution-guide.html].

How to Build a JupyterHub Image

Topics Home

	Hubploy’s Expected Directory Structure
	.github Folder

	Deployments Folder

	Hub Folder

	YAML File Value Overriding in Hubploy
	GitHub Action Files

	JupyterHub Deployment Files

	Local Hub Helm Chart Files

	Helm Versions in Hubploy
	Helm Versions Present by Default

	Using a Custom Version of Helm

	Local Usage

	GitHub Action Usage

Hubploy’s Expected Directory Structure

Hubploy expects the directory structure shown in the
hubploy template repository [https://github.com/yuvipanda/hubploy-template]. The folders must be
set up in this fashion:

hubploy-template/
├── .github
│ └── workflows
│ ├── deploy.yaml
│ └── image-build.yaml
├── deployments
│ └── hub
│ ├── config
│ │ ├── common.yaml
│ │ ├── prod.yaml
│ │ └── staging.yaml
│ ├── hubploy.yaml
│ ├── image
│ │ ├── ipython_config.py
│ │ ├── postBuild
│ │ └── requirements.txt
│ └── secrets
│ ├── aws-ecr-config.cfg
│ ├── aws-eks-config.cfg
│ ├── prod.yaml
│ └── staging.yaml
├── hub
│ ├── Chart.yaml
│ ├── requirements.lock
│ ├── requirements.yaml
│ ├── templates
│ │ ├── jupyter-notebook-config.yaml
│ │ └── nfs-pvc.yaml
│ └── values.yaml
├── LICENSE
├── README.rst
└── requirements.txt

.github Folder

This folder houses the GitHub Workflow files that you can use for Continuous Integration with
Hubploy. deploy.yaml will attempt to build the staging or production JupyterHub upon updates
to the respective GitHub branch. image-build.yaml will attempt to build the JupyterHub image
upon updates to only the production branch.

These files have references to a Docker image that uses Hubploy. You can change this image. Some
options are listed in How to Setup a Hubploy Development Environment.

Deployments Folder

The deployments folder can hold multiple subfolders, but each must have the same structure as the
hub folder. Renaming the hub folder is part of the recommended workflow for deploying a JupyterHub.
Each subfolder directly under deployments needs a different name so that Hubploy can distinguish
between them in Hubploy commands.

Each JupyterHub is deployed with YAML files. The YAML files listed under deployments must have
these names.

Hubploy takes in secrets for credentialing via the .cfg files. You can rename these freely,
just be sure to put the proper names into hubploy.yaml.

The image folder can have additional files depending on how you are building the image. See more
in the image building how-to. If you are not specifying images in your hubploy.yaml file,
the images/ folder can be deleted.

Hub Folder

The hub folder houses a local Helm Chart [https://helm.sh/docs/intro/using_helm/]. This chart and folder can be renamed, but the name
needs to be present in Hubploy commands, the files in the .github folder, and in Chart.yaml
. Modification of the files in here should be done as you would change a Helm Chart.

YAML File Value Overriding in Hubploy

There are several .yaml files present in the hubploy-template repository. It can be unclear
which settings go in which files. This topic hopes to clear that up a bit. As a reminder, here is
the directory structure that Hubploy expects (minimized for focus on the yaml files):

hubploy-template/
├── .github
│ └── workflows
│ ├── deploy.yaml
│ └── image-build.yaml
├── deployments
│ └── hub
│ ├── config
│ │ ├── common.yaml
│ │ ├── prod.yaml
│ │ └── staging.yaml
│ ├── hubploy.yaml
│ └── secrets
│ ├── aws-ecr-config.cfg
│ ├── aws-eks-config.cfg
│ ├── prod.yaml
│ └── staging.yaml
└── hub
 ├── Chart.yaml
 ├── requirements.lock
 ├── requirements.yaml
 ├── templates
 │ ├── jupyter-notebook-config.yaml
 │ └── nfs-pvc.yaml
 └── values.yaml

GitHub Action Files

The two files under .github/workflows/ manage individual GitHub Actions for Hubploy. They are
independent of most of the rest of Hubploy.

JupyterHub Deployment Files

The main value files are related to the JupyterHub Helm release. The lowest level of these are
specified in hub/values.yaml via:

jupyterhub: {}

The braces can be removed once there are yaml values in the file, but they are needed if this block
is empty. Appropriate values to put in this file are those that will span both versions of all
JupyterHubs that you will deploy with Hubploy, as this file will be used for all of them.

The next file in the heirarchy is deployments/hub/config/common.yaml. This file covers
deployment values that are common to both the staging and production hubs that Hubploy named
“hub,” or what you had changed that folder name to. If there are multiple JupyterHubs being managed
, each one will have a common.yaml. Values in this file will overwrite hub/values.yaml.

The next two files in the heirarchy are also in the config folder: staging.yaml and
prod.yaml. These contain values for the staging and production hubs, respectively. Values in
these files will override the previous two. These two files do not override each other ever since they are for two different hubs.

The last files in the heirarchy are under the secrets directory. These are set in a folder that
we tell git-crypt to encrypt when pushing code to GitHub. In general, there shouldn’t be anything
in these files that overwrites the other staging.yaml and prod.yaml. It is more expected
that values in these files will overwrite default credentials or paths present in the first two
files.

A quick summary of the heirarchy follows in descending priority (lower overwrites higher)
but ascending generality (higher applies to more hubs):

hub/values.yaml
 deployments/hub/config/common.yaml
 deployments/hub/config/staging.yaml
 deployments/hub/config/prod.yaml
 deployments/hub/secrets/staging.yaml
 deployments/hub/secrets/prod.yaml

Local Hub Helm Chart Files

Everything under the hub folder is related to the Helm Chart. In Chart.yaml, the main
specification is what the Chart is named and what version you are on. In requirements.yaml,
the JupyterHub Helm chart is listed as the only dependency and you can pick a specific version.
values.yaml is used to provide the lowest level of values for JupyterHub configuration and
other deployment pieces that are present in the templates/ folder or other dependencies
you choose to add to the Helm chart.

Helm Versions in Hubploy

	Helm Versions Present by Default

	Using a Custom Version of Helm

	Local Usage

	GitHub Action Usage

Helm Versions Present by Default

The hubploy Docker image has Helm [https://helm.sh/] v2.16.9
and v3.2.4 installed by default. This may depend on the specific version
of hubploy that is installed. Versions can be found in the
Dockerfile [https://github.com/yuvipanda/hubploy/blob/master/Dockerfile]
present in the base folder of the
hubploy [https://github.com/yuvipanda/hubploy] repository. There isn’t
a version matrix to help find which versions of helm ship with certain
versions of hubploy. You can look at the Dockerfile’s commit history
or just use the most recent version of hubploy, which has the versions
listed above.

Using a Custom Version of Helm

To use your own installed version of helm, set the environment variable
HELM_EXECUTABLE. hubploy will pick up the value from this environment
variable to use when running helm commands. It will default to helm,
ie. v2.16.9, if nothing else is installed. You can find the line of code that
does this
here [https://github.com/yuvipanda/hubploy/blob/master/hubploy/helm.py#L34].

Local Usage

You can use several versions of helm in local usage of hubploy
This does require that you have installed helm or are using the
hubploy Docker image on your local machine.

To use this environment variable on a local installation of hubploy,
use the following command from your terminal:

export HELM_EXECUTABLE=~/absolute/path/to/helm/binary

For example, if you wanted to use helm v3 locally and had installed
and moved it to /usr/local/bin/helm3, you would run the following from
your terminal:

export HELM_EXECUTABLE=/usr/local/bin/helm3

If you already have helm v2 installed, no extra steps are necessary.

GitHub Action Usage

To use this environment variable in a GitHub Action, use the following lines
in your workflow file:

env:
 HELM_EXECUTABLE: /absolute/path/to/helm/binary

More information on this second option can be found on the
Environment variables page [https://docs.github.com/en/free-pro-team@latest/actions/reference/environment-variables]
on GitHub Docs.

Reference Docs Home

	Hubploy Configuration Values Reference
	images
	image_name

	registry
	provider

	gcloud
	project

	service_key

	aws
	account_id

	region

	service_key

	cluster
	provider

	gcloud
	project

	cluster

	zone

	service_key

	aws
	account_id

	cluster

	region

	service_key

	Contribution Guide
	Setting up for Documentation Development

	Setting up for Hubploy Development

Hubploy Configuration Values Reference

This reference doc will detail the various configuration values present in hubploy.yaml.
Here is the hubploy.yaml file that comes with cloning hubploy-template:

images:
 image_name: # TODO: Full path to your docker image, based on the following pattern
 # On AWS: <account-id>.dkr.ecr.<zone>.amazonaws.com/<your-hub-name>-user-image
 # On Google Cloud: gcr.io/<project-name>/<your-hub-name>-user-image
 registry:
 provider: # TODO: Pick 'gcloud' or 'aws', and fill up other config accordingly
 gcloud:
 # Pushes to Google Container Registry.
 project: # TODO: GCloud Project Name
 # Make a service account with GCR push permissions, put it in secrets/gcr-key.json
 service_key: gcr-key.json
 aws:
 # Pushes to Amazon ECR
 account_id: # TODO: AWS account id
 region: # TODO: Zone in which your container image should live. Match your cluster's zone
 # TODO: Get AWS credentials that can push to ECR, in same format as ~/.aws/credentials
 # then put them in secrets/aws-ecr-config.cfg
 service_key: aws-ecr-config.cfg

cluster:
 provider: # TODO: gcloud or aws
 gcloud:
 project: # TODO: Name of your Google Cloud project with the cluster in it
 cluster: # TODO: Name of your Kubernetes cluster
 zone: # TODO: Zone or region your cluster is in
 # Make a service key with permissions to talk to your cluster, put it in secrets/gkee-key.json
 service_key: gke-key.json
 aws:
 account_id: # TODO: AWS account id
 region: # TODO: Zone or region in which your cluster is set up
 cluster: # TODO: The name of your EKS cluster
 # TODO: Get AWS credentials that can access your EKS cluster, in same format as ~/.aws credentials
 # then put them in secrets/aws-eks-config.cfg
 service_key: aws-eks-config.cfg

The various values are described below.

images

The entire images block is optional. If you don’t need it, comment it out or delete it.

image_name

	Full path to your docker image, based on the following pattern:

	
	On AWS: <account-id>.dkr.ecr.<zone>.amazonaws.com/<your-hub-name>-user-image

	On Google Cloud: gcr.io/<project-name>/<your-hub-name>-user-image

registry

provider

Either ‘aws’ or ‘gcloud’. More options will be present in the future.
Both the aws and gcloud blocks are uncommented. The one that you do not pick should be
commented out.

gcloud

project

GCloud Project Name

service_key

gcr-key.json by default.

Make a service account with GCR push permissions and put it in secrets/gcr-key.json. You can
rename this file, but you will also need put the new filename here.

aws

account_id

AWS account ID

region

The zone in which your ECR image will live. This should match the zone where your cluster will
live.

service_key

aws-ecr-config.cfg by default.

Get AWS Credentials that can push images to ECR. These credentials should be in the same format as
found in ~/.aws/credentials and put in to the file secrets/aws-ecr-config.cfg. You can
rename this file, but you will also need put the new filename here.

cluster

provider

Either ‘aws’ or ‘gcloud’. More options will be present in the future.
Both the aws and gcloud blocks are uncommented. The one that you do not pick should be
commented out.

gcloud

project

Name of your Google Cloud project with the cluster you will create.

cluster

Name of the Kubernetes cluster you will create.

zone

Zone or region this cluster will sit in.

service_key

gke-key.json by default.

Make a service key with permissions to talk to your cluster and put it in secrets/gke-key.json.
You can rename this file, but you will also need put the new filename here.

aws

account_id

AWS account ID

cluster

The name of the EKS cluster you will create.

region

Zone or region this cluster will sit in.

service_key

aws-eks-config.cfg by default.

Get AWS credentials that can access your EKS cluster. These credentials should be in the same
format as found in ~/.aws/credentials and put in to the file secrets/aws-eks-config.cfg.
You can rename this file, but you will also need put the new filename here.

Contribution Guide

	Setting up for Documentation Development

	Setting up for Hubploy Development

hubploy is open-source and anyone can contribute to it. We welcome
the help! Yuvi Panda is the original author and can give GitHub contributor
access to those who are committed to making hubploy better. You do not
have to be a contributor on GitHub to suggest changes in
the Issues section [https://github.com/yuvipanda/hubploy/issues] or make
pull requests. A contributor will have to accept your changes before they become
a part of hubploy.

If you don’t have git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]
already, install it and clone this repository.

git clone https://github.com/yuvipanda/hubploy

Using a
forking workflow [https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow]
is also useful and will make seting up pull requests easier.

Once you have made changes that you are ready to offer to hubploy,
make a
pull request [https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/about-pull-requests]
to the main hubploy repository [https://github.com/yuvipanda/hubploy].
Someone will get back to you soon on your changes.

If you want to dicuss
changes before they get onto GitHub or contact a contributor, try the
JupyterHub Gitter channel [https://gitter.im/jupyterhub/jupyterhub].

Setting up for Documentation Development

The hubploy documentation is automatically built on each commit
as configured on ReadTheDocs [https://readthedocs.org/projects/hubploy/].
Source files are in the docs/ folder of the main repository.

To set up your local machine for documentation development, install the
required packages with:

From the docs/ folder
pip install -r doc-requirements.txt

To test your updated documentation, run:

From the docs/ folder
make html

Make sure there are no warnings or errors. From there, you can check
the _build/html/ folder and launch the .html files locally to
check that formatting is as you expect.

Setting up for Hubploy Development

See the How-To guide on
setting up a development environment [https://hubploy.readthedocs.io/en/latest/howto/hubploy-setup-dev-environment.html]
for hubploy.

In short, you can install hubploy and its dependencies easily
with the above guide but you will need a
kubernetes [https://kubernetes.io/] cluster to do local deployment
tests. Some good resources for deploying a kubernetes cluster are:

	Zero to JupyterHub K8s [https://zero-to-jupyterhub.readthedocs.io/en/latest/]

	AWS Terraform K8s Examples [https://github.com/pangeo-data/terraform-deploy/tree/master/aws-examples]

You will also need to reference the section
Using a Custom Hubploy Locally [https://hubploy.readthedocs.io/en/latest/howto/hubploy-setup-dev-environment.html#using-a-custom-hubploy-locally],
rather than doing a default hubploy installation.

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 HubPloy

 		
 How-To Guides Home

 		
 How to Setup a Repository to Deploy a JupyterHub with Hubploy

 		
 Step 0: Setup Prerequisites

 		
 Step 1: Get the hubploy-template Repository

 		
 Step 2: Install Hubploy

 		
 Step 3: Configure the Hub

 		
 Step 4: Build and Push the Image

 		
 Step 5: Deploy the Staging Hub

 		
 Step 6: Deploy the Production Hub

 		
 Step 7: Setup git-crypt for Secrets

 		
 Step 8: GitHub Workflows

 		
 How to Setup a Hubploy Development Environment

 		
 Prerequisites

 		
 Modifying Hubploy Files

 		
 Using a Custom Hubploy Locally

 		
 Building a Custom Hubploy on DockerHub

 		
 Contributing to Hubploy

 		
 How to Build a JupyterHub Image

 		
 Topics Home

 		
 Hubploy’s Expected Directory Structure

 		
 .github Folder

 		
 Deployments Folder

 		
 Hub Folder

 		
 YAML File Value Overriding in Hubploy

 		
 GitHub Action Files

 		
 JupyterHub Deployment Files

 		
 Local Hub Helm Chart Files

 		
 Helm Versions in Hubploy

 		
 Helm Versions Present by Default

 		
 Using a Custom Version of Helm

 		
 Local Usage

 		
 GitHub Action Usage

 		
 Reference Docs Home

 		
 Hubploy Configuration Values Reference

 		
 images

 		
 cluster

 		
 Contribution Guide

 		
 Setting up for Documentation Development

 		
 Setting up for Hubploy Development

_static/comment-bright.png

_static/ajax-loader.gif

